On the modulus algorithm for the linear complementarity problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولOn the modulus algorithm for the linear complementarity problem
or to conclude that no such vectors ω, z exist. The inequalities appearing in (1) and in the sequel are understood componentwise and o denotes the zero vector. Many applications and solution methods for (1) can be found in [3] and [4], respectively. In [8] (see also Section 9.2 in [4]), the so-called modulus algorithm was developed for solving the LCP: Let I denote the identity and with x ∈ R w...
متن کاملA Quadratically Convergent Interior-Point Algorithm for the P*(κ)-Matrix Horizontal Linear Complementarity Problem
In this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (HLCPs). The algorithm uses only full-Newton steps which has the advantage that no line searchs are needed. Moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملa quadratically convergent interior-point algorithm for the p*(κ)-matrix horizontal linear complementarity problem
in this paper, we present a new path-following interior-point algorithm for -horizontal linear complementarity problems (hlcps). the algorithm uses only full-newton steps which has the advantage that no line searchs are needed. moreover, we obtain the currently best known iteration bound for the algorithm with small-update method, namely, , which is as good as the linear analogue.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operations Research Letters
سال: 2004
ISSN: 0167-6377
DOI: 10.1016/j.orl.2003.11.004